Math 21 – Review for Exam #1

Ра	rt One: Parametric equations and plane curves; polar coordinates
1	For parametric equations: $x = \frac{1}{t}$ and $y = 2t^3 + 4$, find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at $t = 1$.
2	For parametric equations $x = \sec \theta$ and $y = \cos^2 \theta$, find the tangent line to the curve at $\theta = 0$
3	Find the equation of the tangent line to $x = \frac{1}{2t+1}$, $y = 3t - 2$ at $t = 1$. Convert the rectangular equation to polar form: $x^2 + y^2 - 3x + 2y = 0$
4	Convert the rectangular equation to polar form: $x^2 + y^2 - 3x + 2y = 0$
5	Convert the polar equation to rectangular form: $r = \frac{3}{5 \sin \theta - 2 \cos \theta}$
6	A) Find the arc length of $x = t - \frac{t^3}{9}$; $y = \frac{t^2}{\sqrt{3}} + 1$, for $0 \le t \le 1$
	B) Find the arc length of $x = 1 - \sin t$; $y = 1 - \cos t$, for $0 \le t \le 2\pi$
	C) Find the arc length of $x = t^2$, $y = 4t^3$, $0 \le t \le 1$ (solution at end of solution
	document)
Ра	rt Two: Vectors ; Lines and Planes
1	For $\boldsymbol{u} = \langle 3, -2, 0 \rangle$ and $\boldsymbol{v} = \langle -1, 2, -3 \rangle$ find
	A) $\boldsymbol{u}\cdot\boldsymbol{v}$
	B) $(2\boldsymbol{u} - 3\boldsymbol{v}) \cdot \boldsymbol{v}$
	C) $proj_u v$
	D) $\boldsymbol{u} imes \boldsymbol{v}$
	E) the angle between \boldsymbol{u} and \boldsymbol{v}
	F) <i>u</i>
2	Find the area of the triangle with vertices: $P(2, -1,3)$, $Q(3,0,2)$, and $R(0,2,1)$.
3	Find the parametric equations of the line through $P(1, -2,3)$ and $Q(0,2,5)$.
4	Find the equation of the plane through points $P(0,2,-1)$, $Q(1,0,3)$ and $R(2,-1,1)$.
5	Find the distance from point $P(2,3,-1)$ to the plane $3x - y + 2z - 2 = 0$
6	Find the distance between point $Q(1,2,-1)$ and line $x = 3 + 2t$; $y = -1 + 3t$; $z = -2t$.
7	Find the angle between planes $2x - 3y + 2z = 0$ and $3x - y + z - 1 = 0$.
8	Is vector $(3, -5, 2)$ parallel to $(12, -20, -8)$? Explain why or why not.
-	rt Three: Surfaces in Space
1	Find the trace of surface $\frac{x^2}{4} + \frac{y^2}{9} - \frac{z^2}{16} = -1$ in the following planes and
	categorize the curve:
	A) in the $xy - plane$
	B) in the $xz - plane$
	C) in the $yz - plane$
	D) in the plane $z = 4$
	E) in the plane $z = 2$
	F) in the plane $z = 5$
2	The 3D-cylinder $x^2 + z^2 = 4$
	A) has trace in the plane $y = 4$, given by
	B) the rulings of the 3D-cylinder $x^2 + z^2 = 4$ are parallel to which axis?