Ma	th 15 Review for Exam #1 – sections 1.5, 2.1, 2.2, 2.3, 2.4, 3.1	
1	For $f(x) = \frac{x-5}{\sqrt{3-x}}$ find the domain.	
2	For the piece-wise defined function $f(x) = \begin{cases} 2x+5, x < 3\\ 7x+2, x \ge 3 \end{cases}$, what is $f(-2)$, $f(10)$, and $f(3)$?	
Find the limits; if the limit does not exist then explain why.		
3	$\lim_{x \to 1} f(x) = \begin{cases} 2x + 5, \ x < 1\\ x + 6, \ x \ge 1 \end{cases}$	
4	$\lim_{x \to 2} f(x) = \begin{cases} 3x + 5, x \neq 2\\ 7, \qquad x = 2 \end{cases}$	
5	$\lim_{x \to 3} f(x) = \begin{cases} 2x+1, \ x < 3\\ x+5, \ x \ge 3 \end{cases}$	
6	$\lim_{x \to 3} f(x) = \frac{ x-3 }{ x-3 }$	
7	$\lim_{x \to 8} f(x) = \frac{\sqrt{x+1}-3}{x-8}$	
Determine if the function is continuous at $x = c$.		
8	$f(x) = \frac{5}{x-2}, x = 2$	
	a) continuous b) discontinuous & removable c) discontinuous & non-removable	
9	$f(x) = \frac{x-2}{x+5}, \ x = 2$	
	a) continuous b) discontinuous & removable c) discontinuous & non-removable	
10	$f(x) = \frac{x^2 - 4}{x - 2}, \ x = 2$	
	a) continuous b) discontinuous & removable c) discontinuous & non-removable	
11	$f(x) = \begin{cases} x+5, & x \le 2\\ 3x+4, & x > 2 \end{cases} x = 2$	
	a) continuous b) discontinuous & removable c) discontinuous & non-removable	
Recall: $f(x)$ is continuous at $x = c$ if		
$\begin{array}{c} I. f(c) exists \\ I. lim f(c) = constant \\ \end{array}$		
	$\lim_{\alpha \to c} f(\alpha) = \xi(\alpha)$	
111.	$\lim_{x \to c} f(x) = f(c)$	
Circ	le the roman numerals that are true for $f(x)$ and c .	
12	f(x) = 3x - 2, c = 5: I, II, III	
13	$f(x) = \frac{x-5}{x-2}$ and $c = 3$: <i>I</i> , <i>II</i> , <i>III</i>	
14	$f(x) = \frac{x^{c-1}}{x^{-1}} \text{ and } c = 1: I, II, III$	
15	$f(x) = \begin{cases} 5x - 3, \ x < 3\\ x + 1, \ x \ge 3 \end{cases} \text{ and } c = 3: \ I, \ II, \ III$	
16	Find the one-sided infinite limit:	
	$\lim_{x \to 4^{-}} \frac{1}{x^2 - x - 12} = 1$	
17	Find the one-sided infinite limit:	

	$\lim \frac{x}{x} =$
10	$x \to 2^+ x^2 - 5x + 6$ $x^2 - 4$
10	$f(x) = \frac{x^2}{x^2+3x-10}$, find the discontinuities. Which are removable?
19	Prove that $x^3 - 2x + 5$ has a zero in the interval [-3,2].
20	For $f(x) = x^2 - 4x + 5$, show that $f(c) = 2$ in the interval [2,5], and find the value of c .
21	Find the vertical asymptotes: $f(x) = \frac{x-2}{x^3+x^2+10x}$
22	Find the slope of the secant line from $x = 2$ to $x = 3$, through the curve given
	by $f(x) = x^2 - 2x + 5$.
23	Write an expression for the slopes of the secant lines:
	$\begin{array}{c} x \\ x \\ x \end{array}$
	В)
	x = y = f(x)
24	What is the limit definition of the devivative?
24	A) Use the limit definition of the derivative to find $f'(2)$ where $f(x) = x^2 + 5$
25	γ (set the limit definition of the derivative to find $f(2)$, where $f(x) = x + 3$.
	B) Find the equation of the tangent line to $f(x) = x^2 + 5$ at $x = 2$.
26	A) Use the definition of the derivative to find $f'(x)$, for $f(x) = x^2 - 2x + 3$.
	B) Find the point on $f(x) = x^2 - 2x + 3$ where the tangent line is horizontal.
27	Use the alternate definition of the derivative: $f'(c) = \lim \frac{f(x) - f(c)}{1 + 1}$ to find $f'(4)$
	$x \to c$ $x \to c$ $x \to c$ $x \to c$
	where $f(x) = \frac{1}{\sqrt{x}}$.
28	Use the alternate form of the definition of the derivative to show that $f'(2)$ does not exist, for

Answers: **1.** x < 3 **2.** f(-2) = 1, f(10) = 72, f(3) = 23 **3.** 7 **4.** 11 **5.** DNE **6.** DNE **7.** 1/6

8. c **9.** A **10.** B **11.** C **13.** I,II,III **13.** I,II,III **14.** II **15.** I **16.** $-\infty$ **17.** $-\infty$ **18.** x = -5 (not removable); x = 2 (removable) **19.** f(x) a poly so it is cont. ; f(-3) = -16, f(2) = 9; -16 < 0 < 9 so by IVT there exists c in (-3,2) such that

 $f(c) = 0. \quad 20. \ f(x)a \ poly \ so \ it \ is \ cont. \ ; \ 1 < 2 < 10; \ by \ IVT \ there \ exists \ c \ in (2,5) \ such \ that$ $<math display="block">f(c) = 2; \ c = 3 \ 21. \ x = 0 \ 22. \ 3 \ 23. \ \frac{f(x) - f(c)}{x - c} \ 24. \ \frac{f(x+h) - f(x)}{h} \ 25. \ A) \ 4 \quad B) \ y = 4x + 1$ $26. \ f'(x) = 2x - 2 \ 27. \ -1/16 \ 28. \ \lim_{x \to 2} \frac{(x-2)^{\frac{2}{3}} - 0}{x-2} = \lim_{x \to 2} \frac{1}{(x-2)^{\frac{1}{3}}} \ DNE \ 29. \ f(x) = |x|$

30. No,No,No